-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
*2(x, 0) -> 0
*2(x, s1(y)) -> +2(*2(x, y), x)
if3(true, x, y) -> x
if3(false, x, y) -> y
odd1(0) -> false
odd1(s1(0)) -> true
odd1(s1(s1(x))) -> odd1(x)
half1(0) -> 0
half1(s1(0)) -> 0
half1(s1(s1(x))) -> s1(half1(x))
if3(true, x, y) -> true
if3(false, x, y) -> false
pow2(x, y) -> f3(x, y, s1(0))
f3(x, 0, z) -> z
f3(x, s1(y), z) -> if3(odd1(s1(y)), f3(x, y, *2(x, z)), f3(*2(x, x), half1(s1(y)), z))
↳ QTRS
↳ DependencyPairsProof
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
*2(x, 0) -> 0
*2(x, s1(y)) -> +2(*2(x, y), x)
if3(true, x, y) -> x
if3(false, x, y) -> y
odd1(0) -> false
odd1(s1(0)) -> true
odd1(s1(s1(x))) -> odd1(x)
half1(0) -> 0
half1(s1(0)) -> 0
half1(s1(s1(x))) -> s1(half1(x))
if3(true, x, y) -> true
if3(false, x, y) -> false
pow2(x, y) -> f3(x, y, s1(0))
f3(x, 0, z) -> z
f3(x, s1(y), z) -> if3(odd1(s1(y)), f3(x, y, *2(x, z)), f3(*2(x, x), half1(s1(y)), z))
F3(x, s1(y), z) -> ODD1(s1(y))
POW2(x, y) -> F3(x, y, s1(0))
F3(x, s1(y), z) -> *12(x, x)
F3(x, s1(y), z) -> F3(*2(x, x), half1(s1(y)), z)
*12(x, s1(y)) -> *12(x, y)
-12(s1(x), s1(y)) -> -12(x, y)
F3(x, s1(y), z) -> F3(x, y, *2(x, z))
F3(x, s1(y), z) -> HALF1(s1(y))
F3(x, s1(y), z) -> *12(x, z)
ODD1(s1(s1(x))) -> ODD1(x)
F3(x, s1(y), z) -> IF3(odd1(s1(y)), f3(x, y, *2(x, z)), f3(*2(x, x), half1(s1(y)), z))
HALF1(s1(s1(x))) -> HALF1(x)
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
*2(x, 0) -> 0
*2(x, s1(y)) -> +2(*2(x, y), x)
if3(true, x, y) -> x
if3(false, x, y) -> y
odd1(0) -> false
odd1(s1(0)) -> true
odd1(s1(s1(x))) -> odd1(x)
half1(0) -> 0
half1(s1(0)) -> 0
half1(s1(s1(x))) -> s1(half1(x))
if3(true, x, y) -> true
if3(false, x, y) -> false
pow2(x, y) -> f3(x, y, s1(0))
f3(x, 0, z) -> z
f3(x, s1(y), z) -> if3(odd1(s1(y)), f3(x, y, *2(x, z)), f3(*2(x, x), half1(s1(y)), z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
F3(x, s1(y), z) -> ODD1(s1(y))
POW2(x, y) -> F3(x, y, s1(0))
F3(x, s1(y), z) -> *12(x, x)
F3(x, s1(y), z) -> F3(*2(x, x), half1(s1(y)), z)
*12(x, s1(y)) -> *12(x, y)
-12(s1(x), s1(y)) -> -12(x, y)
F3(x, s1(y), z) -> F3(x, y, *2(x, z))
F3(x, s1(y), z) -> HALF1(s1(y))
F3(x, s1(y), z) -> *12(x, z)
ODD1(s1(s1(x))) -> ODD1(x)
F3(x, s1(y), z) -> IF3(odd1(s1(y)), f3(x, y, *2(x, z)), f3(*2(x, x), half1(s1(y)), z))
HALF1(s1(s1(x))) -> HALF1(x)
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
*2(x, 0) -> 0
*2(x, s1(y)) -> +2(*2(x, y), x)
if3(true, x, y) -> x
if3(false, x, y) -> y
odd1(0) -> false
odd1(s1(0)) -> true
odd1(s1(s1(x))) -> odd1(x)
half1(0) -> 0
half1(s1(0)) -> 0
half1(s1(s1(x))) -> s1(half1(x))
if3(true, x, y) -> true
if3(false, x, y) -> false
pow2(x, y) -> f3(x, y, s1(0))
f3(x, 0, z) -> z
f3(x, s1(y), z) -> if3(odd1(s1(y)), f3(x, y, *2(x, z)), f3(*2(x, x), half1(s1(y)), z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
HALF1(s1(s1(x))) -> HALF1(x)
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
*2(x, 0) -> 0
*2(x, s1(y)) -> +2(*2(x, y), x)
if3(true, x, y) -> x
if3(false, x, y) -> y
odd1(0) -> false
odd1(s1(0)) -> true
odd1(s1(s1(x))) -> odd1(x)
half1(0) -> 0
half1(s1(0)) -> 0
half1(s1(s1(x))) -> s1(half1(x))
if3(true, x, y) -> true
if3(false, x, y) -> false
pow2(x, y) -> f3(x, y, s1(0))
f3(x, 0, z) -> z
f3(x, s1(y), z) -> if3(odd1(s1(y)), f3(x, y, *2(x, z)), f3(*2(x, x), half1(s1(y)), z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
HALF1(s1(s1(x))) -> HALF1(x)
POL(HALF1(x1)) = x1
POL(s1(x1)) = 1 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
*2(x, 0) -> 0
*2(x, s1(y)) -> +2(*2(x, y), x)
if3(true, x, y) -> x
if3(false, x, y) -> y
odd1(0) -> false
odd1(s1(0)) -> true
odd1(s1(s1(x))) -> odd1(x)
half1(0) -> 0
half1(s1(0)) -> 0
half1(s1(s1(x))) -> s1(half1(x))
if3(true, x, y) -> true
if3(false, x, y) -> false
pow2(x, y) -> f3(x, y, s1(0))
f3(x, 0, z) -> z
f3(x, s1(y), z) -> if3(odd1(s1(y)), f3(x, y, *2(x, z)), f3(*2(x, x), half1(s1(y)), z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
ODD1(s1(s1(x))) -> ODD1(x)
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
*2(x, 0) -> 0
*2(x, s1(y)) -> +2(*2(x, y), x)
if3(true, x, y) -> x
if3(false, x, y) -> y
odd1(0) -> false
odd1(s1(0)) -> true
odd1(s1(s1(x))) -> odd1(x)
half1(0) -> 0
half1(s1(0)) -> 0
half1(s1(s1(x))) -> s1(half1(x))
if3(true, x, y) -> true
if3(false, x, y) -> false
pow2(x, y) -> f3(x, y, s1(0))
f3(x, 0, z) -> z
f3(x, s1(y), z) -> if3(odd1(s1(y)), f3(x, y, *2(x, z)), f3(*2(x, x), half1(s1(y)), z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ODD1(s1(s1(x))) -> ODD1(x)
POL(ODD1(x1)) = x1
POL(s1(x1)) = 1 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
*2(x, 0) -> 0
*2(x, s1(y)) -> +2(*2(x, y), x)
if3(true, x, y) -> x
if3(false, x, y) -> y
odd1(0) -> false
odd1(s1(0)) -> true
odd1(s1(s1(x))) -> odd1(x)
half1(0) -> 0
half1(s1(0)) -> 0
half1(s1(s1(x))) -> s1(half1(x))
if3(true, x, y) -> true
if3(false, x, y) -> false
pow2(x, y) -> f3(x, y, s1(0))
f3(x, 0, z) -> z
f3(x, s1(y), z) -> if3(odd1(s1(y)), f3(x, y, *2(x, z)), f3(*2(x, x), half1(s1(y)), z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
*12(x, s1(y)) -> *12(x, y)
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
*2(x, 0) -> 0
*2(x, s1(y)) -> +2(*2(x, y), x)
if3(true, x, y) -> x
if3(false, x, y) -> y
odd1(0) -> false
odd1(s1(0)) -> true
odd1(s1(s1(x))) -> odd1(x)
half1(0) -> 0
half1(s1(0)) -> 0
half1(s1(s1(x))) -> s1(half1(x))
if3(true, x, y) -> true
if3(false, x, y) -> false
pow2(x, y) -> f3(x, y, s1(0))
f3(x, 0, z) -> z
f3(x, s1(y), z) -> if3(odd1(s1(y)), f3(x, y, *2(x, z)), f3(*2(x, x), half1(s1(y)), z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(x, s1(y)) -> *12(x, y)
POL(*12(x1, x2)) = x2
POL(s1(x1)) = 1 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
*2(x, 0) -> 0
*2(x, s1(y)) -> +2(*2(x, y), x)
if3(true, x, y) -> x
if3(false, x, y) -> y
odd1(0) -> false
odd1(s1(0)) -> true
odd1(s1(s1(x))) -> odd1(x)
half1(0) -> 0
half1(s1(0)) -> 0
half1(s1(s1(x))) -> s1(half1(x))
if3(true, x, y) -> true
if3(false, x, y) -> false
pow2(x, y) -> f3(x, y, s1(0))
f3(x, 0, z) -> z
f3(x, s1(y), z) -> if3(odd1(s1(y)), f3(x, y, *2(x, z)), f3(*2(x, x), half1(s1(y)), z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
F3(x, s1(y), z) -> F3(*2(x, x), half1(s1(y)), z)
F3(x, s1(y), z) -> F3(x, y, *2(x, z))
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
*2(x, 0) -> 0
*2(x, s1(y)) -> +2(*2(x, y), x)
if3(true, x, y) -> x
if3(false, x, y) -> y
odd1(0) -> false
odd1(s1(0)) -> true
odd1(s1(s1(x))) -> odd1(x)
half1(0) -> 0
half1(s1(0)) -> 0
half1(s1(s1(x))) -> s1(half1(x))
if3(true, x, y) -> true
if3(false, x, y) -> false
pow2(x, y) -> f3(x, y, s1(0))
f3(x, 0, z) -> z
f3(x, s1(y), z) -> if3(odd1(s1(y)), f3(x, y, *2(x, z)), f3(*2(x, x), half1(s1(y)), z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F3(x, s1(y), z) -> F3(x, y, *2(x, z))
Used ordering: Polynomial interpretation [21]:
F3(x, s1(y), z) -> F3(*2(x, x), half1(s1(y)), z)
POL(*2(x1, x2)) = x1 + x2
POL(+2(x1, x2)) = 0
POL(0) = 1
POL(F3(x1, x2, x3)) = x2
POL(half1(x1)) = x1
POL(s1(x1)) = 1 + x1
half1(s1(0)) -> 0
half1(s1(s1(x))) -> s1(half1(x))
half1(0) -> 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
F3(x, s1(y), z) -> F3(*2(x, x), half1(s1(y)), z)
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
*2(x, 0) -> 0
*2(x, s1(y)) -> +2(*2(x, y), x)
if3(true, x, y) -> x
if3(false, x, y) -> y
odd1(0) -> false
odd1(s1(0)) -> true
odd1(s1(s1(x))) -> odd1(x)
half1(0) -> 0
half1(s1(0)) -> 0
half1(s1(s1(x))) -> s1(half1(x))
if3(true, x, y) -> true
if3(false, x, y) -> false
pow2(x, y) -> f3(x, y, s1(0))
f3(x, 0, z) -> z
f3(x, s1(y), z) -> if3(odd1(s1(y)), f3(x, y, *2(x, z)), f3(*2(x, x), half1(s1(y)), z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
-12(s1(x), s1(y)) -> -12(x, y)
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
*2(x, 0) -> 0
*2(x, s1(y)) -> +2(*2(x, y), x)
if3(true, x, y) -> x
if3(false, x, y) -> y
odd1(0) -> false
odd1(s1(0)) -> true
odd1(s1(s1(x))) -> odd1(x)
half1(0) -> 0
half1(s1(0)) -> 0
half1(s1(s1(x))) -> s1(half1(x))
if3(true, x, y) -> true
if3(false, x, y) -> false
pow2(x, y) -> f3(x, y, s1(0))
f3(x, 0, z) -> z
f3(x, s1(y), z) -> if3(odd1(s1(y)), f3(x, y, *2(x, z)), f3(*2(x, x), half1(s1(y)), z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
-12(s1(x), s1(y)) -> -12(x, y)
POL(-12(x1, x2)) = x2
POL(s1(x1)) = 1 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
*2(x, 0) -> 0
*2(x, s1(y)) -> +2(*2(x, y), x)
if3(true, x, y) -> x
if3(false, x, y) -> y
odd1(0) -> false
odd1(s1(0)) -> true
odd1(s1(s1(x))) -> odd1(x)
half1(0) -> 0
half1(s1(0)) -> 0
half1(s1(s1(x))) -> s1(half1(x))
if3(true, x, y) -> true
if3(false, x, y) -> false
pow2(x, y) -> f3(x, y, s1(0))
f3(x, 0, z) -> z
f3(x, s1(y), z) -> if3(odd1(s1(y)), f3(x, y, *2(x, z)), f3(*2(x, x), half1(s1(y)), z))